
ORIGINAL PAPER

Phenylisoserine in the gas-phase and water: Ab initio studies
on neutral and zwitterion conformers

Joanna E. Rode & Jan Cz. Dobrowolski & Joanna Sadlej

Received: 9 February 2010 /Accepted: 11 June 2010 /Published online: 11 July 2010
# The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract The conformational landscape of phenylisoserine
(PhIS) was studied. Trial structures were generated by
allowing for all combinations of single-bond rotamers.
Based on the B3LYP/aug-cc-pVDZ calculations 54 con-
formers were found to be stable in the gas phase. The six
most stable conformers were further optimized at the
B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVDZ levels for
which characteristic intramolecular hydrogen bond types
were classified. To estimate the influence of water on PhIS
conformation, the IEF-PCM/B3LYP/aug-cc-pVDZ calcula-
tions were carried out and showed 51 neutral and six
zwitterionic conformers to be stable in water solution.
According to DFT calculations, the conformer equilibrium
in the gas phase is dominated by one conformer, whereas
the MP2 calculations suggest three PhIS structures to be
significantly populated. Comparison of DFT and MP2
energies of all 57 structures stable in water indicates that,
in practice, one zwitterionic and one neutral conformer

determine the equilibrium in water. Based on the AIM
calculations, we found that for the neutral conformers in
vacuum and in water, d(H...B) is linearly correlated with
Laplacian at the H-bond critical point.
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Introduction

The molecules important in biology are remarkable, consid-
ering that they can display a wide variety of structures and
functions. Most of the interesting functions carried out by
these biomolecules are dependent on stable well-defined
structures. This factor can be considered in the development
of unnatural backbone modified peptides. β-amino acids [1]
belong to such a group. The additional carbon atom
incorporated into the backbone structure in natural α-amino
acids results in unnatural oligomers containing side chains,
which are significantly different from that found in natural
compounds, but that can be recognized by side chain of
receptors. The title molecule, phenylisoserine (Scheme 1), is
one of such examples.

Among the new families of anticancer agents the natural
product paclitaxel (Taxol®, Scheme 2) and its derivative
docetaxel (Taxotere®) are used in the treatment of breast,
ovarian cancers and lung carcinomas [2–4]. Paclitaxel is a
natural product isolated from the bark of the western pacific
yew tree. It contains 10-deacetylbaccatin-III (DBAC,
Scheme 3) - a natural substance isolated from the leaves of
the Taxus baccata species and phenylisoserine side chain [5,
6]. It has been shown that the side chain at C-13 and the
diterpene moiety of taxol (DBAC) are both essential for the
anticancer activity of the taxoid family. The baccatin III
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tetracyclic ring system has been shown to be a rigid segment.
Moreover, the structure-activity studies demonstrated that the
presence of the phenylisoserine side chain (as N-benzoyl-
(2R,3S)-3-phenylisoserine, Scheme 2) with correct absolute
stereochemistry is significant for strong cytotoxicity. As all
amino acids, the side chain of paclitaxel, is flexible and can
adopt different conformations. The total synthesis of pacli-
taxel was done in the early 70s [7], however, because of
complicated multistep synthesis and small yield it is not
applied in the pharmaceutical industry. A semisynthetic way
of producing paclitaxel seems to be the most promising: it is
based on semiproduct (10-deacetylbaccatin-III) extracted
from leaves of Taxus baccata to condensate it with N-
benzoyl-(2R,3S)-3-phenylisoserine [8–10]. Therefore, study
on conformational landscape of phenylisoserine may provide
insights and may support practical efforts to obtain the very
valuable medicine.

To study the conformational landscape of phenylisoser-
ine as one of the β-amino acids is important not only
because of paclitaxel and related compounds. It was found
that β-amino acids can form stable α-helix, β-sheet, and
hairpin motifs, similar to those in α-peptides. Indeed, while
ca.15-20 residues are required to obtain a stable α-peptide
α-helix, only six β-amino acids are necessary to form a
stable β-peptide-based helix [11–14]. Because of its special
importance in so many aspects, it is highly desirable to
explore conformations of the β-amino acids thoroughly.

Likewise other amino acids, the phenylisoserine mole-
cule has no symmetry and exhibits a significant internal

rotational degree of freedom due to rotations around the
three single bonds in the central part of the carbon skeleton.
Therefore, it is likely to occur as numerous low energy
conformers. Amino acids are known to exist as zwitterions
in the solid state and in solution and in the nonionized,
neutral form in the gas phase. Study of the conformational
behavior of the neutral amino acids is important for
understanding the dependence of the peptides and protein
backbone.

The gas-phase data are, in general qualitatively consis-
tent with the matrix-isolation results. Several amino acids
have been studied experimentally by using the IR inert-
matrix-isolation method [15–24]. In the low-temperature
matrices three conformers were found for glycine [15–18],
three for valine [19], two for proline [20], four for serine
[21], six for phenylalanine [24], and more than three for
tryptophane [25]. Tyrosine has been studied only by ab
initio method [26]. Recently, for cysteine and β-alanine we
identified in the low-temperature matrices, 3 and 6 con-
formers, respectively [22, 23]. Also, in few laboratories,
investigations on gaseous amino acids have been carried
out by microwave spectroscopy during the past two
decades [26–41]. To the best of our knowledge, so far,
phenylisoserine has not been studied either by matrix-
isolation IR spectroscopy nor by microwave spectroscopy.

The conformational characteristic of phenylisoserine has
been the subject of only a few theoretical studies. In the
most detailed theoretical study, the conformation of the side
chain (with the glycolate fragment) have been investigated
at the HF/6-31G(d,p) and PM3 levels [42]. Nine con-
formers have been found and it has been suggested that
only in one of them, the most stable, the C3 phenyl is
accommodated in a favorable position with its π orbital far
away from the carbonyl oxygen lone pairs. Onsager
continuum approach (SCFR) and supermolecular models
with two water molecules have been used to study the
conformation in polar solvent. The conformation similar to
the molecule of the crystal structure of paclitaxel is now the
most favorable [42] (and refs. therein). The second part of
paclitaxol – DBAC have also been studied by the
calculations. The benzoate and acetate are necessary to
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allow binding to tubulin in the humane body. The
importance of the oxetane ring was found by ZINDO
method, which is consistent with experimental data [43].

The structure-activity relationship in the phenylisoserine
moiety of the paclitaxel are dominated by the discussion of
its different conformations named as polar and non-polar
[42, 44, 45]. If the solvent is non-polar (CDCl3), then one
assumes that paclitaxel binding site on microtubules is
hydrophobic and the molecule adopts a staggered confor-
mation around the C2-C3 bond. On the other hand, if the
solvent is polar, the C3 phenyl group is positioned close to
C2 benzoyl and C4 acetyl groups [42]. To summarize, the
conformation of the phenylisoserine moiety in different
solvents depends on several factors.

Continuing our previous study on β-amino acids [22,
23] we undertook a detailed investigation on the confor-
mation behavior phenylisoserine isolated in the gas-phase
and in the water solvent. Since there has been no
experimental attempt to determine either microwave and
matrix isolation IR spectra of gaseous phenylisoserine nor
x-ray structure, the calculated data may be useful in
searching of both gas-phase and condensed phases con-
formers with the spectroscopic methods. Therefore, the goal
of this study is twofold: (i) to estimate the conformer
population of phenylisoserine in the gas-phase; (ii) to
predict the conformer population of phenylisoserine in the
water solution considering zwitterionic structures. In this
way, a platform for a better distinction of various con-
formers in future liquid-phase experiments is settled. To the
best of our knowledge, no systematic and accurate study on
the conformational behavior of phenylisoserine in gas-
phase and in water solution has been reported.

Computational details

Modeling the gas phase

All the calculations were performed by using the hybrid
Becke three-parameter Lee–Yang–Parr DFT B3LYP func-
tional [46, 47] which reliability in calculations of the
ground state geometries has been widely assessed [48]. The
aug-cc-pVDZ Dunning’s [49, 50] (and for the most stable
gas-phase conformers the aug-cc-pVTZ) basis sets were
employed. These basis sets are known to be adequate to
describe both organic molecules and their hydrogen-bonded
systems. The conformational space of phenylisoserine was
explored through a systematic variation of dihedral angles:
d (O4C1O5H ) , d (O5C1C2C3 ) , d (C1C2O6H ) ,
d(C1C2C3N7), d(C2C3N7H) and d(C2’C1’C3C2) (for
atom labeling see Scheme 1). The stationary structures are
found by ascertaining that all the harmonic frequencies are
real. The relative abundances of the most stable conforma-

tions were then estimated by using the Gibbs free energy at
298.15 K, ΔG, relative to the most stable conformer. At the
B3LYP/aug-cc-pVDZ level, 54 conformers were found to
be stable in the gas phase.

All the calculations were performed by using the
Gaussian 03 [51] and Gaussian 09 [52] programs.

Modeling the aqueous phase

A systematic search for the stable zwitterions within the
supermolecule approach goes far beyond this study;
therefore, we decided to study the solvent effect by the
IEF-PCM model [53, 54], which includes long-range
interactions only. Continuum models are widely used
nowadays to simulate solvent effects on conformation
[55]. Among many methods used, the IEF-PCM method
introduced in the late 1990s, was shown to simulate the
aqueous phase fairly well [55]. Combined supermolecular-
continuum approaches would probably be more successful,
if they could be applied for phenylisoserine surrounded by
hundreds of water molecules. To this aim, 54 gas-phase
nonionized structures were reoptimized in water solvent at
the IEFPCM/B3LYP/aug-cc-pVDZ level to yield 51 non-
ionized and six stable zwitterion structures.

Results and discussion

Geometry and energy of the gas-phase phenylisoserine
monomers

The phenylisoserine molecule has six single bonds around
which free rotations may lead to as much as ca. 40 000
local minima. To generate the structures of it the relevant
torsion angles were varied. Based on semiempirical AM1
search, 158 stable phenylisoserine conformers were
appointed and reoptimized at the B3LYP/aug-cc-pVDZ
level yielding 54 stable structures. Each of the phenyl-
isoserine functional groups, carboxyl and alcoholic OH,
C=O, and NH2, may operate as both a hydrogen bond
donor or acceptor. Thus, because of internal hydrogen
bonds some conformers are stabilized more than the other.
Six low-energy structures of phenylisoserine (Fig. 1,
Table 1) were further studied by using the B3LYP/aug-cc-
pVTZ and MP2/aug-cc-pVDZ methods. They were found
to be in the 3.5 kcal mol−1 energy range relative to the most
stable form. Thermochemical properties at 298.15 K were
computed for all the conformers and the relative abundan-
ces were estimated for six of them. Figures, energetic and
selected dihedral angles of all 54 phenylisoserine con-
formers optimized at the B3LYP/aug-cc-pVDZ level are
available in the electronic supplementary materials
(Tables 1SI and 2SI, Fig. 1SI). In Table 3SI Cartesian
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coordinates are gathered for the six most stable structures
calculated at the B3LYP/aug-cc-pVDZ level.

Now let us compare the energetic results generated by
using different methods and basis sets. The conformers
are ordered according to the increasing total energy
obtained at the B3LYP/aug-cc-pVDZ level (Table 1,
Table 1SI). First and foremost, at the B3LYP/aug-cc-
pVDZ level the most stable conformer 1 is more stable
than the next one by as much as 2.5 kcal mol−1. Upon the
thermochemical corrections, the energetic order changes
but only slightly: conformer 3 is located at the 2nd
position and conformer 5 at the 4th position (Table 1).
However, the order of conformers 4, 5, and 6 is slightly
perturbed (Table 1). Conformer 1 is found to be still the
global minimum when the basis set is increased to aug-cc-
pVTZ and is still separated from the next one by more
than 2.3 kcal mol−1 (Table 1). The energetical picture
undergoes significant change at the MP2/aug-cc-pVDZ
level. First, conformer 2 becomes global minimum,
separated from the next one, 1, by only 0.13 kcal mol−1.
Moreover, the third stable conformer 3 is only 0.86 kcal
mol−1 less stable than 2, and should be seriously taken into
account if equilibrium conformer mixture in the gas phase
is considered (Table 1).

The conformers may be characterized by the intramo-
lecular hydrogen bonds (IHB). The presence of three
hydrogen bond donors (NH2, OHc, OHa) and four hydrogen
bond acceptors (O=C, OHa, NH2, OHc) allows for a wide
range of hydrogen bond combinations and large number of
stable forms. Let us now discuss the six lowest energy
conformers. All the most stable six structures, exhibit the
presence of the intramolecular hydrogen bonds (Fig. 1,
Table 2). Two of them, 1 and 4, exhibit the OHc...NH2

hydrogen bond, in which the OHc carboxylic group, as a
proton donor, is in trans position to the C=O group. This
IHB forms a six-membered ring (Fig. 1). In conformers 1
and 4 this intramolecular H-bond is quite short, i.e., ca. 1.74
Å (Table 2). This type of hydrogen bond OHc...NH2 is the
same as that of phenylalanine [24], tyrosine [26] and
tryptophan [56] global minimum. In structures 2 and 3, the
OHa alcoholic hydroxyl group is the proton donor and
proton acceptor at the same time. In conformer 2 it is the
proton donor to the NH2 group and proton acceptor from the
OHc group forming the OHa...NH2 and OHc...OHa IHB,
respectively. In conformer 3 the situation is different: the
OHa group is the proton acceptor from the NH2 group and
the proton donor to the C=O group, forming NH2...OHa and
OHa...O=C IHB, respectively. The other very important IHB

1 (0.0) [0.0] 2 (2.47) [2.35] 

3 (2.99) [2.32] 4 (3.08) [2.76] 

 

5 (3.22) [2.65] 6 (3.42) [2.83] 

Fig. 1 The B3LYP/aug-cc-pVDZ
optimized the most
stable six structures of
phenylisoserine in the gas phase.
The relative total energies (ΔE,
kcal mol−1) and free Gibbs ener-
gies (ΔG, kcal mol−1)
referred to the most stable
conformer are given in
parentheses and square brackets,
respectively
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is the OHa...O=C bond (ca. 2.0 Å) stabilizing the 1, 3, and 6
conformers by forming a five-membered ring (Fig. 1). The
next IHB, OHc...OHa is quite short (ca. 1.9 Å) and it is
present in two conformers 2 and 5. In the case of conformers
3, 4, 5, and 6, there is also an IHB in which NH2 group is a
proton donor to either OHa or O=C groups (Table 2).

The population of conformers at room temperature are
shown in Table 1. In the gas phase the distribution has a
peak: the most stable form 1 is at the DFT level populated
in at least 93% (X(G) in terms of ΔG/B3LYP) (Table 1).
On the other hand, the populations based on total energies
calculated at the MP2/aug-cc-pVDZ level indicate three
conformers: 1, 2, and 3 to be stable in significant amounts
of ca. 37%, 46%, and 11%, respectively. Thus the
population analysis is definitely dependent on energy
correlation factor, however, to go far beyond the level
applied here seems now to be quite a difficult task for so
many conformers.

Energy of the aqueous-phase phenylisoserine conformers

Neutral forms

To estimate the influence of water on phenylisoserine
molecule conformations, all 54 conformers stable in the
gas phase were reoptimized by using the IEF-PCM/B3LYP/
aug-cc-pVDZ method. The aqueous surrounding affects

both the shape of the conformer distribution curve and the
energetic differences between PhIS conformers. It is
noticeable that in the first six stable conformations there are
four conformers stable in the gas phase, yet, in a different
order. Conformer 1w (1 stands for number of the conformer
in the gas phase, w denotes water) remains the most stable
one and is still separated from the next one by 2.4 kcal mol−1

(in terms of ΔG, Table 1). Furthermore, the conformers are
ordered differently (Table 1); in particular, the energy
differences between them are larger. Additionally, among
the most stable conformers there are forms denoted as 29w
and 10w, that have been much less populated in the gas
phase. This confirms a significant effect of solvation on
geometrical parameters and solvatation energies of solutes.

All the most stable six neutral structures exhibit the
presence of the intramolecular hydrogen bonds (IHB,
Fig. 2, Table 2). Out of these six neutral conformers, three
exhibit the OHc...NH2 and two OHa...NH2 internal hydro-
gen bonds (Fig. 2, Table 2). The shortest OHc...NH2

hydrogen bond is found for 1w, which is the most stable
neutral form in water. It is noticeable, that all structures
with the OHc...NH2 IHB (1w, 29w, 4w) are the most stable
in water. The longest OHc...NH2 hydrogen bond is detected
for the 2w conformer, which is the fourth stable neutral
form in water. Thus, the presence of the internal OHc...NH2

hydrogen bond is probably the main factor controlling
conformer stability in water. Additionally, the distance of

B3LYP/aug-cc-pVDZ B3LYP/aug-cc-pVTZ MP2/aug-cc-pVDZ

gas phase ΔE ΔE0 ΔG X(G) ΔE ΔE0 ΔG X(G) ΔE X(G)

1 0.00 0.00 0.00 93.61 0.00 0.00 0.00 94.83 0.13 37.29

2 2.47 2.36 2.35 1.77 2.33 2.36 2.52 1.34 0.00 46.07

3 2.99 2.52 2.32 1.86 2.65 2.35 2.34 1.84 0.86 10.77

4 3.08 3.10 2.76 0.89 3.21 3.34 3.33 0.34 1.61 3.05

5 3.22 2.85 2.65 1.07 2.97 2.77 2.78 0.87 2.04 1.48

6 3.42 2.96 2.83 0.79 3.13 2.83 2.85 0.77 2.09 1.35

neutral in water ΔE ΔE0 ΔG X(G) ΔE ΔE0 ΔG X(G) ΔE X(G)

1w 0.00 0.00 0.00 97.86 0.00 0.00 0.00 98.20 0.00 86.60

29w 2.51 2.52 2.39 1.74 2.59 2.54 2.48 1.50 1.96 3.18

4w 3.52 3.64 3.43 0.30 3.69 3.80 3.68 0.20 1.65 5.35

2w 4.46 4.62 4.23 0.08 4.28 4.46 4.20 0.08 1.74 4.61

10w 5.77 6.10 5.64 0.01 5.42 5.75 5.27 0.01 4.38 0.05

3w 6.26 5.95 5.23 0.01 5.88 5.65 5.18 0.02 3.57 0.21

zwitterion in water ΔE ΔE0 ΔG X(G) ΔE ΔE0 ΔG X(G) ΔE X(G)

1z 0.00 0.00 0.00 99.76 0.00 0.00 0.00 99.78 0.00 98.59

2z 4.62 3.80 3.75 0.18 4.77 3.93 3.87 0.14 4.38 0.06

3z 4.75 5.13 5.09 0.02 4.73 5.18 5.04 0.02 4.23 0.08

4z 4.83 4.65 4.62 0.04 4.99 4.84 4.52 0.05 3.13 0.50

5z 5.79 5.98 5.89 0.00 5.82 6.04 5.81 0.01 3.13 0.50

6z 6.11 6.81 6.75 0.00 5.89 6.70 6.59 0.00 3.48 0.28

Table 1 The B3LYP/aug-cc-
pVDZ, B3LYP/aug-cc-pVTZ
and MP2/aug-cc-pVDZ
optimized for the six most stable
structures of phenylisoserine
(PhIS) in gas phase, in water as
neutral and zwitterion forms.
The relative total energies (ΔE,
kcal mol−1) and free Gibbs
energies (ΔG, kcal mol−1)
referred to the most stable
conformer. The populations X
(G) were calculated based on
ΔG values (DFT) and ΔE
values (MP2) separately for the
6 structures of each type
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OHa...C1’(Phe) is shorter in 29w than in the other con-
formers. This suggests that the interaction with the ring π-
electrons may also be an important factor. Figures, energies
and selected dihedral angles of all 51 neutral PhIS
conformers in water optimized at the IEF-PCM/B3LYP/
aug-cc-pVDZ level are available in the electronic supple-
mentary materials (Tables 4SI and 5SI, Fig. 2SI). Addi-
tionally, Table 3SI lists Cartesian coordinates of the six
most stable neutral forms in water.

Zwitterionic forms

The zwitterionic phenylisoserine conformers are unstable in
the gas phase and thus, there are no such minima on the
potential energy surface of an isolated monomer. Yet, in the
water medium they become quite populated. Therefore, we
carried out calculations for the zwitterion form of PhIS in
the water phase. Out of 51 neutral structures stable in water
only six appeared to exist as zwitterions (z) (Fig. 3, Table 1).
Moreover, the zwitterionic 1z conformer came out to be the
most stable and definitely dominating in water. Energies
and selected dihedral angles of the six zwitterion PhIS
conformers in water, optimized at the IEF-PCM/B3LYP/
aug-cc-pVDZ level, are available in the electronic supple-
mentary materials (Tables 6SI and 7SI). Additionally, in
Table 3SI Cartesian coordinates of these zwitterion struc-
tures are listed.

According to energetic ΔG results (Table 1), the most
stable five zwitterion forms are those where the internal
hydrogen bond is formed between the protonated amino
group, NH3

+, and the carboxylic COO− moiety. For
example, in 1z this distance is equal to 1.565 Å and is
shorter by 0.056 Å than OHc...NH2 in neutral 1w form and
shorter by 0.178 Å than OHc...NH2 in 1 in the gas phase.
Additionally, the interaction of the NH3

+ group with the
OHa group stabilizes conformer 6z. Moreover, the interac-
tion of OHa with the ring, OHa...C1’(Phe), seems to
stabilize all zwitterionic conformers.

Let us now discuss conformer population in water
solution. For water phase it is necessary to consider both
the neutral and zwitterionic forms because for all
aminoacids there are equilibria of these forms in solution.
However, first let us focus on each type separately. The
population of neutral conformers in water (Table 1)
shows the maximum peak for conformer 1w, which is
populated in at least 98% (X(G) in terms of ΔG/B3LYP).
In contrast to the gas phase population, the MP2 level does
not change the quantitative population picture. Indeed,
according to MP2/aug-cc-pVDZ total energies conformer
1w is populated in ca. 87% (Table 1). Similarly, the
population of zwitterionic conformers in water (Table 1)
shows the maximum peak for conformer 1z, which is
populated in ca. 99% (X(G) in terms of ΔG/B3LYP andT
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98% at the MP2 level (Table 1). Now, when the most
stable six neutral and six zwitterionic conformers are
considered all together (Table 8SI) it appears that, at the
DFT level, only the most stable neutral conformer 1w and
the most stable zwitterionic conformer 1z are present in
amounts of ca. 86% and 12%, respectively. Qualitatively,
the MP2 calculations yield a similar result: in practice only
the most stable neutral conformer 1w and the most stable
zwitterionic conformer 1z are present. However, the MP2
level indicates that the zwitterions can be populated much
more (ca. 36%) than predicted by the DFT calculations.
Thus we expect both forms to be detected in equilibrium
in water.

At the end let us comment on the question of how much
stabilization is provided by each of the hydrogen bonds
identified in each of the important conformers, both in
vacuum and in water. Notice, that the studied conformers are
stabilized by a variety of different hydrogen bonds and close
contacts (see Table 2). Moreover, the repulsive interactions
are also important for conformer diversification.

A more detailed inspection into the influence of
intramolecular hydrogen bonds can be obtained by AIM
analysis [57]. It was shown that Laplacian value of the
electron density as well as electron density in bond and ring

critical points of the hydrogen bonds correlates with
hydrogen bond strength [58–61]. Also, the hydrogen bond
length correlates with its strength. Therefore, an interdepen-
dence between intramolecular hydrogen bond length and the
Laplacian in its critical point is presented for all the most
stable conformers in Fig. 4 (the values are listed in Table 9SI
in Supplementary Information file). It is clear that the
stronger the hydrogen bond the shorter it is and the more
negative the Laplacian value. We found that for the neutral
conformers in vacuum and in water, d(H...B) is linearly
correlated with ∇2ρ (R=0.930, Fig. 4), whereas the points
corresponding to the zwitterions are spread out. Thus, the
weak CH...OHa bond is placed in the top right of Fig. 4, the
medium strong OHa...NH2 and OHa...O=C bonds are located
in the center, whereas the strongest OHc...NH2 bonds are
concentrated in the bottom left of Fig. 4. We found that for
zwitterions the hydrogen bond length is not correlated with
∇2ρ value (Fig. 4), which is not surprising because of strong
localization of the charges at the ends of the H-bonds.

As we stress above, the hydrogen bond strength is not a
unique factor ordering the conformers stability. Thus,
despite the fact that one is able to scale the intramolecular
H-bond strength in the studied conformers, the other factors
are hidden yet not negligible.

 

1w (0.0) [0.0] 29w (2.51) [2.39] 

  
4w (3.52) [3.43] 2w (4.46) [4.23] 

 
10w (5.77) [5.64] 3w (6.26) [5.23] 

Fig. 2 The B3LYP/aug-cc-pVDZ
optimized the most stable six
neutral structures of phenyl-
isoserine in water modeled by
IEF-PCM method. The relative
total energies (ΔE, kcal mol−1)
and free Gibbs energies (ΔG,
kcal mol−1) referred to the most
stable conformer are given in
parentheses and square
brackets, respectively
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Summary

Continuing our earlier studies on β-amino-acid conforma-
tions we found 54 conformers of penylisoserine to be stable
in the gas phase, and 51 neutral and six zwitterionic
conformers to be stable in water. The calculations were

performed at the B3LYP/aug-cc-pVDZ, B3LYP/aug-cc-
pVTZ and MP2/aug-cc-pVDZ levels. In the gas phase, in
the most stable six conformers the following intramolecular
hydrogen bonds are present: OHa...O=C, OHc...NH2, OHa...
NH2, OHc...OHa, HNH...O=C, and HNH...OHa. The most
stable conformer in the gas phase and in water phase is

1z (0.0) [0.0] 2z (4.64) [3.88] 

 
3z (4.75) [5.09] 4z (4.83) [4.62] 

 
5z (5.79) [5.89] 6z (6.11) [6.75] 

Fig. 3 The B3LYP/aug-cc-pVDZ
optimized the most stable six
structures of phenylisoserine
zwitterions in water modeled by
IEF-PCM method. The relative
total energies (ΔE, kcal mol−1)
and free Gibbs energies (ΔG, kcal
mol−1) referred to the most stable
conformer are given in
parentheses and square brackets,
respectively
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Fig. 4 The hydrogen bond lengths
d(H...B) vs Laplacians ∇2ρ in the
hydrogen bond BCPs calculated
for the most stable neutral
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B3LYP/aug-cc-pVDZ optimized
structures
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stabilized due to strong OHc...NH2 and OHa...O=C intra-
molecular hydrogen bonds. On the other hand, the
zwitterionic forms in water are stabilized not only by
interaction of NH3

+ and COO− groups but also by
interaction between H2NH and the phenyl ring. In the gas
phase, at the DFT level, the most stable conformer is
populated in at least 93%, whereas at the MP2/aug-cc-
pVDZ level three conformers seems to be present in
significant amounts of ca. 37%, 46%, and 11%. This shows
that the population analysis is strongly dependent on
electron correlation. Population analysis of the conformers
in water (six neutral and six zwitterionic conformers)
performed at the DFT and MP2 levels show concordantly
that only the most stable neutral conformer and the most
stable zwitterionic conformer are present. However, con-
former ratio is again strongly dependent on electron
correlation. Thus we expect both forms to be detected in
equilibrium in water.
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